研究方向:
1. 共享出行系统的优化与管理
2. 人工智能算法在交通问题中的应用
3. 时空大数据分析
4. 交通行为建模与分析
5. 低碳交通与公共政策
获奖情况:
上海市海外领军人才引进计划 2022
“中法蔡元培”奖学金 2019-2022
巴黎萨克雷大学国际交流奖学金 2020
主要参与课题:
[1]国家自然科学基金国际(地区)合作与交流项目,71961137006,为明天城市的清洁空气融资:通过土地增值回馈确保城市可持续发展、提高城市空气质量的潜力,2019/03-2022/02,190万元
[2]国家自然科学基金面上项目,71774118,政府-企业-居民协同共治的道路交通碳交易机制研究,2018/01-2021/12,50万元
[3]科技部重点研发计划,2018YFB1601301-3,城市群多模式客运枢纽协同服务与一体化交通运行衔接模式研究,2019/08-2021/08,49万元
[4]国家自然科学基金重大研究计划,91546115,大数据驱动的共享交通管理与决策范式转变研究,2016/01-2018/12, 41万元
[5]上海市科委科技创新行动计划,16511105204,电动车分时租赁交通物联网大数据处理平台关键技术研究,2016/07/01-2018/07,120万元
代表性论文:
[1] Tu M.,Li W., Orfila O., Li Y., & Gruyer D. Exploring nonlinear effects of the built environment on ridesplitting: Evidence from Chengdu. Transportation Research Part D: Transport and Environment, 2021, 93, 102776.(ESI高被引,SCI, Q1, IF= 5.495)
[2] Tu M.,Li Y, Li W, Orfila O., & Gruyer D. Improving ridesplitting services using optimization procedures on a shareability network: A case study of Chengdu [J]. Technological Forecasting and Social Change, 2019, 149: 119733.(SCI, Q1, IF= 8.593, Top)
[3] Li W., Pu Z., Li Y., &Tu M.How does ridesplitting reduce emissions from ridesourcing? A spatiotemporal analysis in Chengdu, China. Transportation Research Part D: Transport and Environment, 2021, 95, 102885.(SCI, Q1, IF= 5.495)
[4] Li, H., Ou, D., Rasheed, I., &Tu, M.A Software-Defined Networking Roadside Unit Cloud Resource Management Framework for Vehicle Ad Hoc Networks. 2022, Journal of Advanced Transportation.(SCI, Q2, IF= 2.93)
[5] Tu M.,Li Y, Bao L, Wei Y., Orfila O., & Gruyer D. Logarithmic Mean Divisia Index Decomposition of CO2 Emissions from Urban Passenger Transport: An Empirical Study of Global Cities from 1960–2001[J]. Sustainability, 2019, 11(16): 4310.(SCI, Q2, IF= 3.251)
[6] Tu M.,Ye LI, Orfila O., Li Y., & Gruyer D. Improving Ridesplitting Service Using Optimization Procedures on Shareability Network: A Case Study of Chengdu, China. IEEE Intelligent Transportation Systems Conference (ITSC), 2019, 10: 4506-4511. (EI)
[7] Tu M., Wang T., Orfila, O., Li, Y., & Gruyer, D.Applying machine learning XGBoost to examine the relationship between built environment and dockless shared bike ridership, 2022, 102nd Annual Meeting of the Transportation Research Board, Washington, D.C. (EI)